See FISITA Library items from Masato Furuta
EB2020-MDS-011
Paper
Abstract
Mr. Masato Furuta, ADVICS CO.,LTD., JAPAN
Mr. Yukio Nishizawa, ADVICS CO.,LTD., JAPAN
Mr. Masaru Yagihashi, ADVICS CO.,LTD., JAPAN
Mr. Masayoshi Fuji, Nagoya Institute of Technology, JAPAN
In the automotive industry, regulations concerning fuel economy are expected to be reinforced to address environmental and energy-related issues. Therefore, demands for products with reduced size and weight are expected to increase. Furthermore, measures for reducing CO2 emissions in the manufacturing process will also be required to contribute to a low-carbon society. However, conventional brake pads, which contain organics in the blended materials, are not beneficial to reducing the size and weight of brake pads because organic materials tend to decompose during high-temperature friction, leading to reduction in frictional performance. Furthermore, the heating process, which is a source of CO2 emissions, cannot be eliminated in the manufacturing process, because thermosetting resins are used as a binder.
Given the above issues, this research focused on a ceramics technology that utilizes mechanochemical reactions to achieve solidification without firing (non-firing ceramics). By using the non-firing ceramics as a binder, it is expected that high temperature decomposition can be prevented and frictional performance can be improved. It is also expected that CO2 emissions can be reduced, as this technology is a solidification method that proceeds at low temperatures and completes in a short time; this implies that firing will not be required in the manufacturing process.
We combined the binder (non-firing ceramics) with abrasive materials, lubricants, inorganic fillers, and reinforcement fibers, and fabricated brake pads. Results showed that the fabricated brake pads had demonstrated good frictional performance under high temperature and sufficient strength. We consider that non-firing ceramics can be applied to brake pads.
EuroBrake 2021
AMM
Downloads
Error message goes here.
Masato Furuta is an engineer of the R&D department of ADVICS Japan. He is researching on friction materials and he developed brake pads made from Non-firing Ceramics with Nagoya Institute of Technology. Today, as one of the measurement results, the Friction performance of the pads will be reported.